APPVR 2014-15 Dr Wendy Powell

Open Scene Graph Collisions

In this exercise you will learn how to handle collisions between objects in
your scene. We are going to use simple collision detection between
bounding boxes.

e (Create a new Win32 console project called OSG collisions
e Set the project properties as in the lighting tutorial

Create geometry and display in the viewer

e Set up the initial scene using the following code. You should run
the project to test it before going any further.

#include "stdafx.h"

#include <osgViewer/Viewer>

#include <osgDB/ReadFile>

#include <osg/Node>

#include <osg/PositionAttitudeTransform>
#include <osg/ref _ptr>

int _tmain(int argc, _TCHAR* argv[])

{
// Declare a node which will serve as the root node
// the rest of the scene "hangs" on this node

osg: :ref_ptr<osg::Group> myRoot = new osg::Group();

[/ ¥FFERR ook sk Rk Rk R] 0ad two objects in the scene
koo ok Kok sk sk sk Rk ok ok ok ok /

osg::ref_ptr<osg::Node> blueHex = osgDB::readNodeFile("models/1BlueHex.3ds");
osg::ref_ptr<osg::PositionAttitudeTransform> blueXform = new

osg: :PositionAttitudeTransform();
blueXform->setPosition(osg::Vec3(-0.2,2,0));
blueXform->addChild(blueHex.get());
myRoot->addChild(blueXform.get()); // adds it all to the root node

osg::ref_ptr<osg::Node> redHex = osgDB::readNodeFile("models/redHex.3ds");
osg::ref_ptr<osg::PositionAttitudeTransform> redXform = new

osg: :PositionAttitudeTransform();
redXform->setPosition(osg::Vec3(0.2,2,0));
redXform->addChild(redHex.get());
myRoot->addChild(redXform.get()); // adds it all to the root node

[/ ¥¥¥**¥**set up the viewer to display your sceneX*¥dd*¥xxxxkikik//
osgViewer::Viewer viewer; // Declare a 'viewer' which will display the scene

viewer.setSceneData(myRoot); //assign the scene graph we created above to this
viewer

viewer.setlLightingMode(osg: :View: :LightingMode: :HEADLIGHT); // give the scene
some lighting

viewer.getCamera()->setClearColor(osg::Vec4(1,1,1,1.0)); // sets background
colour of scene

Page 1 of 3

APPVR 2014-15 Dr Wendy Powell

viewer.getCamera()-
>setViewMatrixAsLookAt(osg::Vec3(0.0,0.0,0),0sg::Vec3(0.0,1.0,0), osg::Vec3(0.9, 0.0,
1.0));

[] FHR A A A A A A AK KA KKK KA KA KA KA KA KKK KA KA KA KA KA KK FAK]]

viewer.realize(); // start the viewer
//************ add a tltle to -the WindOW ************************//

typedef osgViewer::Viewer::Windows Windows;
Windows windows;

viewer.getWindows (windows);

windows[@]->setWindowName("UoP osg colllision example");

while (!viewer.done()) // until the end of the program

{

viewer.frame(); // update to next frame
}
return 0;

e Test and run the project. At the moment you should see a red and
blue box static on the screen.

Set up a function to move the boxes

e Now we will create a simple function to move the blue box towards
the red one. Add this function definition to the top of the file:

void moveBox (osg::ref_ptr<osg::PositionAttitudeTransform> blueBox,
osg::ref_ptr<osg::PositionAttitudeTransform> redBox); // this function is going to
move one of the boxes towards the other until we get a hit

e And add this to the bottom of the code:

moveBox(blueXform, redXform);

Page 2 of 3

APPVR 2014-15 Dr Wendy Powell

void moveBox (osg::ref_ptr<osg::PositionAttitudeTransform> blueBox,
osg::ref_ptr<osg::PositionAttitudeTransform> redBox)

{
osg::Vec3d boxPos = blueBox->getPosition();
boxPos[0] +=0.002;
blueBox->setPosition(boxPos);

}

o If you test the project you will see that the blue box moves towards
the red box and passes right through it. Next we need to avoid a
collision.

Create a function to detect a collision

e We are going to make a function to test for a collision, and then
create a response to the collision so that we can see something has
happened. Add the following code to your function (you could make
a separate function for the collision, especially if you are wanting to
test for multiple collisions in a project).

const osg: :BoundingSphere& bsl
const osg::BoundingSphere& bs2
if(bsl.intersects(bs2))

{

blueBox->getBound();
redBox->getBound();

boxPos[@0] -= 0.1;
blueBox->setPosition(boxPos); // bounce the box left after a collision

redBox->setScale(redBox->getScale()*0.9); // decrease the size of the
red box after each hit

}

You will notice that the boxes detect a hit before they appear to touch
each other. This is because of the way bounding spheres are defined. It is
generally considered acceptable but as you can see may appear slightly
odd when viewed directly from the side. You may want to research more
precise collision detection later on.

See if you can create a project with some more interesting collision
behaviour.

Page 3 of 3

